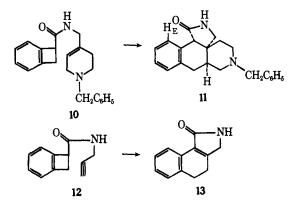

on the distance between the reaction partners. The concertedness of this cycloaddition step was tested as follows.



Thermolysis of the *cis*-3-chloroallylamide $(5a)^{4,8}$ in boiling bromobenzene gave the products 6a⁴ (mp 118-119°; nmr $J_{AB} = 13$ Hz, $J_{BC} = 2$ Hz) and 7a⁴ (mp 116-116.5°; nmr $J_{AB} = 9$ Hz, $J_{BC} = 4.5$ Hz) in 73% yield, whereas the trans amide 5b^{4.8} under similiar conditions afforded the stereoisomers 6b⁴ (mp 132-133°; nmr $J_{AB} = 13$ Hz, $J_{BC} = 11$ Hz) and $7b^4$ (mp 126–126.5° nmr $J_{AB} = 8$ Hz, $J_{BC} = 10$ Hz) in 77% yield. According to nmr and glc analysis the conversions $5a \rightarrow 3a^{-1}$ 6a + 7a and $5b \rightarrow 6b + 7b$ are stereospecific to within 0.5%. Thus the observed stereochemical relationships are in keeping with the operation of a symmetry-controlled $(\pi 4_s + \pi 2_s]$ process.⁹ In boiling o-dichlorobenzene (containing traces of p-toluenesulfonic acid) compounds 5a and 6a were cleanly converted to the cis-fused product 7a, whereas the compounds 5b and 6b gave exclusively the product 7b. Consequently, these results represent the stereocontrolled formation of three centers of chirality in a single synthetic operation.

The analogous stereospecific transformations of the cyclic olefins 8, n = 1, 4 and 8, n = 2, 4 to the tetracyclic products 9, $n = 1^4$ (mp 199–200°; nmr $J_{AB} =$ 9.5 Hz, $J_{BC} = J_{BD} = 7-8$ Hz; 70%), and 9, $n = 2^4$ (mp 175–177°; nmr $J_{AB} = 8.5$ Hz, $J_{BD} \le 7$ Hz, 72%), respectively, illustrate an approach to condensed ring systems with stereochemical control over four adjacent centers of chirality.

The flexibility of this method is further exemplified by the transformations $10 \rightarrow 11$ and $12 \rightarrow 13$. Thus, heating a 1% solution of $10^{4.10}$ in toluene at 250° for

8 hr afforded 11⁴ (mp 216–217°; nmr (CDCl₃) $\delta_{HE} =$ 7.5 ppm, 64%); refluxing an 8% solution of 12⁴ in bromobenzene for 16 hr gave 134 (mp 174-176°; 95%). These experiments indicate that trisubstituted olefinic double bonds, as well as carbon-carbon triple bonds, can participate in intramolecular o-quinodimethane cycloadditions. Finally it should be mentioned that all the reported reactions proceeded in a highly regioselective manner.

Besides providing a simple and efficient route to a variety of new ring systems, the described method may prove of value in the synthesis of certain natural products.11

(11) For an application of intramolecular o-quinodimethane cycloadditions to the synthesis of *dl*-chelidonine, see W. Oppolzer and K. Keller, J. Amer. Chem. Soc., 93, 3835 (1971).

> W. Oppolzer Pharmaceutical Chemical Laboratories, Sandoz Ltd. 4002 Basel, Switzerland Received March 25, 1971

The Thermal Rearrangement of N-(1-Benzocyclobutenyl)vinylacetamide. **Kinetics and Mechanism**

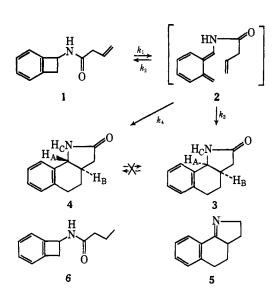
Sir:

Thermal rearrangements of olefinic l-benzocyclobutene derivatives exhibit a high degree of regio- and stereoselectivity.1 These features can be accounted for in terms of a scheme involving o-quinodimethane intermediates. The mechanistic implications of such a scheme have now been tested in the following way.

The amide 1² (prepared by acylation of 1-aminobenzocyclobutene³ with vinylacetyl chloride in aqueous potassium hydroxide, 50-90% yield) was isomerized completely in boiling toluene within 16 hr to give the two stereoisomeric benz[g]indoles 3^2 (mp 162-164°; nmr (CDCl₃) $\delta_{H_A} = 4.76$ (d, J = 6.5 Hz), $\delta_{H_C} \leq$ 7.4 ppm) and 4^2 (mp 194–195°; nmr (CDCl₃) $\delta_{H_A} =$ 4.26 (d, J = 8.5 Hz), $\delta_{\rm Hc} = 8.35$ ppm) in the ratio 4.7:1 (96% yield). The isomers 3 and 4 were not interconverted on heating in boiling toluene for 20 hr

⁽⁸⁾ The corresponding amines were prepared by the reaction of methylamine with pure cis- and trans-1,3-dichloropropene, kindly provided by Dr. M. Kohler, Sandoz Ltd. (9) R. B. Woodward and R. Hoffmann, Angew. Chem., Int. Ed.

Engl., 8, 781 (1969).


⁽¹⁰⁾ Prepared in 70% overall yield by alkylation of N-(4-pyridylmethyl)benzocyclobutenyl-1-carboxamide with benzyl bromide and subsequent reduction of the resulting pyridinium bromide with sodium borohydride in methanol at 0°

⁽¹⁾ W. Oppolzer, J. Amer. Chem. Soc., 93, 3833 (1971).

⁽²⁾ Elemental analyses, as well as ir and nmr spectra, were in excellent agreement with this structure.

⁽³⁾ J. A. Skorcz and J. E. Robertson, J. Med. Chem., 8, 255 (1965).

but both afforded the same oily pyrroline 5^2 on reduction with AlH₃ in tetrahydrofuran⁴ and subsequent oxidation of the resulting pyrrolidines with KMnO₄ in acetone.⁵

The reaction $1 \rightarrow 3 + 4$ is analogous to the related transformations of olefinic 1-benzocyclobutene carboxamides^{1,6} and probably proceeds by way of a reversible opening of the four-membered ring to form an *o*-quinodimethane intermediate 2, which is then trapped by irreversible intramolecular cycloaddition processes. In order to test this hypothesis the thermal reorganization of optically pure butenylamide $1^{2,7}$ ([α]_{365 nm}^{20°(CH₃OH)} +81.9°) in boiling toluene at 748 mm (0.5% solution) was monitored polarimetrically, as well as by nmr analysis. The experimental results are indicated by Figure 1.

The rate of disappearance of the optically active butenylamide 1 is first order, giving directly the rate constant $k_1 = 1.37 \times 10^{-4} \text{ sec}^{-1}$ for the step $1 \rightarrow 2$. Under identical conditions a first-order rate constant $k_1' = 1.94 \times 10^{-4} \text{ sec}^{-1}$ was measured for the racemization⁸ of optically pure butyramide $6^{2.7}$ ($[\alpha]_{365 \text{ nm}}^{20^\circ(\text{CH}_3\text{OH})}$ $+107.5^\circ$). Hence it appears that the olefinic double bond of the butenylamide 1 is not involved to any major extent in the opening of the benzocyclobutene. Further evidence for an achiral intermediate such as 2 is provided by the racemic nature of the products 3 and 4, isolated at an early stage of the reaction (after 60 min).

Figure l also gives information concerning the relative rates of the forward and reverse reactions;

(4) N. M. Yoon and H. C. Brown, J. Amer. Chem. Soc., 90, 2927 (1968).

(5) O. Bayer in "Methoden der Organischen Chemie," 4th ed, Vol. VII/1, Georg Thieme Verlag, Stuttgart, 1954, p 206.

(6) Rearrangements of the corresponding benzocyclobutenylcarboxamides require considerably higher temperatures to proceed at a comparable rate; see ref 1.

(7) Prepared by acylation of optically active aminobenzocyclobutene, separated from its enantiomer by three crystallizations of the corresponding *d*-mandelate (mp 159-160°; $[\alpha]_{b46 \text{ nm}} \simeq (CH_{40}\text{H}) + 55.1^{\circ}$) from benzene-methanol (3:1).

(8) On heating 6 in refluxing toluene (0.5% solution) for 16 hr its nmr spectrum remained unchanged.

if one applies the steady-state approximation⁹ to the intermediate 2, assuming that $k_1 \ll k_2$, the ratios $k_3/k_2 = 3.55$ and $k_4/k_2 = 0.75$ may be derived.¹⁰

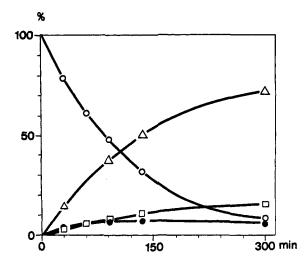
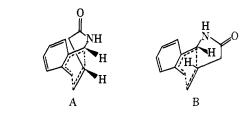



Figure 1. Kinetics of the rearrangement of optically active 1 in refluxing toluene (0.5% solution, 748 mm): \bigcirc , concentration of optically active 1; \bullet , concentration of racemic 1; \triangle , concentration of 3; \Box , concentration of 4.

Consequently, the transition state of the addition $2 \rightarrow 3$ is 1.0 kcal/mol lower and that of the addition $2 \rightarrow 4$ 0.2 kcal/mol higher than the barrier of the ring opening $1 \rightarrow 2$.

On the assumption that the four-membered ring in 1 opens preferentially to form the sterically favored trans-substituted *o*-quinodimethane 2, it can be shown by inspection of appropriate models that the subsequent synchronous cycloaddition step¹¹ has to be regio-specific, giving exclusively annelated products.¹² Thus the endo transition state A should lead to the cis-fused product 3 and the exo transition state B to the transfused product 4.

(9) A. A. Frost and R. G. Pearson, "Kinetics and Mechanism,"
2nd ed, Wiley, New York, N. Y., 1961, p 195.
(10) Comparable rate ratios were derived from Figure 1 using a

(10) Comparable rate ratios were derived from Figure 1 using a "kinetics" computer program; Dr. K. Frei, Sandoz Ltd., personal communication.

(11) For stereochemical results supporting the concertedness of intramolecular o-quinodimethane-olefin cycloadditions, see ref 1.

(12) This is a general explanation for the regioselectivity observed in numerous examples of intramolecular benzocyclobutene-olefin additions.

W. Oppolzer

Pharmaceutical Chemical Laboratories, Sandoz Ltd. 4002 Basle, Switzerland Received March 25, 1971